Connections between climate, food limitation, and carbon cycling in abyssal sediment communities.
نویسندگان
چکیده
Diverse faunal groups inhabit deep-sea sediments over much of Earth's surface, but our understanding of how interannual-scale climate variation alters sediment community components and biogeochemical processes remains limited. The vast majority of deep-sea communities depend on a particulate organic carbon food supply that sinks from photosynthetically active surface waters. Variations in food supply depend, in part, on surface climate conditions. Proposed ocean iron fertilization efforts are also intended to alter surface production and carbon export from surface waters. Understanding the ecology of the abyssal sediment community and constituent metazoan macrofauna is important because they influence carbon and nutrient cycle processes at the seafloor through remineralization, bioturbation, and burial of the sunken material. Results from a 10-year study in the abyssal NE Pacific found that climate-driven variations in food availability were linked to total metazoan macrofauna abundance, phyla composition, rank-abundance distributions, and remineralization over seasonal and interannual scales. The long-term analysis suggests that broad biogeographic patterns in deep-sea macrofauna community structure can change over contemporary timescales with changes in surface ocean conditions and provides significant evidence that sediment community parameters can be estimated from atmospheric and upper-ocean conditions. These apparent links between climate, the upper ocean, and deep-sea biogeochemistry need to be considered in determining the long-term carbon storage capacity of the ocean.
منابع مشابه
Carbon cycling in the deep eastern North Pacific benthic food web: Investigating the effect of organic carbon input
The deep ocean benthic environment plays a role in long-term carbon sequestration. Understanding carbon cycling in the deep ocean floor is critical to evaluate the impact of changing climate on the oceanic systems. Linear inverse modeling was used to quantify carbon transfer between compartments in the benthic food web at a long time-series study site in the abyssal northeastern Pacific (Statio...
متن کاملDeep ocean communities impacted by changing climate over 24 y in the abyssal northeast Pacific Ocean.
The deep ocean, covering a vast expanse of the globe, relies almost exclusively on a food supply originating from primary production in surface waters. With well-documented warming of oceanic surface waters and conflicting reports of increasing and decreasing primary production trends, questions persist about how such changes impact deep ocean communities. A 24-y time-series study of sinking pa...
متن کاملDeep-sea macrofauna exposed to a simulated sedimentation event in the abyssal NE Atlantic: in situ pulse-chase experiments using 13C-labelled phytodetritus
Tracer experiments with 13C-labelled diatoms Thalassiosira rotula (Bacillariophycea, 98% 13C-labelled) were conducted at the Porcupine Abyssal Plain (PAP) in the NE Atlantic (BENGAL Station; 48°50’ N, 16° 30’W, 4850 m depth) during May/June 2000. In situ enrichment experiments were carried out using deep-sea benthic chamber landers: within the chambers a spring bloom was simulated and the fate ...
متن کاملTemperature controls organic carbon sequestration in a subarctic lake
Widespread ecological reorganizations and increases in organic carbon (OC) in lakes across the Northern Hemisphere have raised concerns about the impact of the ongoing climate warming on aquatic ecosystems and carbon cycling. We employed diverse biogeochemical techniques on a high-resolution sediment record from a subarctic lake in northern Finland (70°N) to examine the direction, magnitude and...
متن کاملLignocellulose-responsive bacteria in a southern California salt marsh identified by stable isotope probing
Carbon cycling by microbes has been recognized as the main mechanism of organic matter decomposition and export in coastal wetlands, yet very little is known about the functional diversity of specific groups of decomposers (e.g., bacteria) in salt marsh benthic trophic structure. Indeed, salt marsh sediment bacteria remain largely in a black box in terms of their diversity and functional roles ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 44 شماره
صفحات -
تاریخ انتشار 2008